Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.293
Filtrar
1.
J Cell Mol Med ; 28(8): e18288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597418

RESUMO

Riboflavin is a water-soluble yellowish vitamin and is controversial regarding its effect on tumour cells. Riboflavin is a powerful photosensitizer that upon exposure to radiation, undergoes an intersystem conversion with molecular oxygen, leading to the production of ROS. In the current study, we sought to ascertain the impact of irradiated riboflavin on C6 glioblastoma cells regarding proliferation, cell death, oxidative stress and migration. First, we compared the proliferative behaviour of cells following nonradiated and radiated riboflavin. Next, we performed apoptotic assays including Annexin V and caspase 3, 7 and 9 assays. Then we checked on oxidative stress and status by flow cytometry and ELISA kits. Finally, we examined inflammatory change and levels of MMP2 and SIRT1 proteins. We caught a clear antiproliferative and cytotoxic effect of irradiated riboflavin compared to nonradiated one. Therefore, we proceeded with our experiments using radiated riboflavin. In all apoptotic assays, we observed a dose-dependent increase. Additionally, the levels of oxidants were found to increase, while antioxidant levels decreased following riboflavin treatment. In the inflammation analysis, we observed elevated levels of both pro-inflammatory and anti-inflammatory cytokines. Additionally, after treatment, we observed reduced levels of MMP2 and SIRT. In conclusion, radiated riboflavin clearly demonstrates superior antiproliferative and apoptotic effects on C6 cells at lower doses compared to nonradiated riboflavin.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Apoptose , Metaloproteinase 2 da Matriz , Glioblastoma/tratamento farmacológico , Riboflavina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/farmacologia
2.
Bioelectrochemistry ; 157: 108679, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471411

RESUMO

The primary objective of this study is to elucidate the synergistic effect of an exogenous redox mediator and carbon starvation on the microbiologically influenced corrosion (MIC) of metal nickel (Ni) by nitrate reducing Pseudomonas aeruginosa. Carbon source (CS) starvation markedly accelerates Ni MIC by P. aeruginosa. Moreover, the addition of exogenous riboflavin significantly decreases the corrosion resistance of Ni. The MIC rate of Ni (based on corrosion loss volume) is ranked as: 10 % CS level + riboflavin > 100 % CS level + riboflavin > 10 % CS level > 100 % CS level. Notably, starved P. aeruginosa biofilm demonstrates greater aggressiveness in contributing to the initiation of surface pitting on Ni. Under CS deficiency (10 % CS level) in the presence of riboflavin, the deepest Ni pits reach a maximum depth of 11.2 µm, and the corrosion current density (icorr) peak at approximately 1.35 × 10-5 A·cm-2, representing a 2.6-fold increase compared to the full-strength media (5.25 × 10-6 A·cm-2). For the 10 % CS and 100 % CS media, the addition of exogenous riboflavin increases the Ni MIC rate by 3.5-fold and 2.9-fold, respectively. Riboflavin has been found to significantly accelerate corrosion, with its augmentation effect on Ni MIC increasing as the CS level decreases. Overall, riboflavin promotes electron transfer from Ni to P. aeruginosa, thus accelerating Ni MIC.


Assuntos
Níquel , Pseudomonas aeruginosa , Corrosão , Carbono , Riboflavina/farmacologia , Biofilmes
3.
Arq Bras Oftalmol ; 87(2): e20220273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451681

RESUMO

PURPOSE: To determine the absorbance coefficient of the thin porcine cornea to ultraviolet-A radiation (365 nm) submitted for crosslinking. METHODS: This in vitro, benchtop experiment using cadaver tissue study analyzed 12 porcine corneal lamellas, which were obtained using a microkeratome after mechanical de-epithelization and separated into three thickness groups: 180, 300, and 360 µm. The corneal thickness values were measured by anterior-segment optical coherence tomography. All lamellas had ultraviolet-A (365 nm) absorbance measured with a 96-well plate spectrophotometer using an ultraviolet transparent microplate before riboflavin instillation and preand post-crosslinking according to the Dresden protocol. RESULTS: The ultraviolet absorbance profiles of the 180, 300, and 360 µm groups were obtained as α-coefficients of 12.85, 76.55, and 120.27, respectively. A theoretical formula was calculated though a statistical analysis that demonstrated the correlation between stromal lamellar thickness and ultraviolet absorbance. CONCLUSIONS: Corneal thickness and ultraviolet-A spectral absorbance of corneal lamellas showed linear correlation. These findings can potentially contribute to the optimization of ultraviolet-A application during crosslinking, making the treatment of corneas with thickness <400 µm safe and personalized energy delivery for each corneal thickness.


Assuntos
Córnea , Projetos de Pesquisa , Suínos , Animais , Riboflavina/farmacologia , Tomografia de Coerência Óptica , Raios Ultravioleta
4.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542670

RESUMO

(1) Background: Nutrients play an essential role in bone health, whether in achieving peak bone mineral density (BMD) or maintaining bone health. This study explores the relationship between nutrient supply and femoral bone health at different ages. (2) Methods: A total of 5603 participants meeting the inclusion and exclusion criteria were included in this study using the National Health and Nutrition Examination Survey (NHANES) database from 2005 to 2010, 2013 to 2014, and 2017 to 2018. Femoral bone mineral density and bone status were dependent variables, and dietary nutrient intake and nutrient intake status were independent variables. The relationship between dietary nutrient intake and bone mineral density was explored, and the importance of nutrients affecting bone status was analyzed through a neural network model. At the same time, we investigated the relationship between nutrient intake and bone status. (3) Results: The peak of age and femoral bone mineral density appeared at 20 years old in our study. After grouping by age, logistic regression analysis showed that before 20 years old, without adjusting other variables, high-fat diet was more likely to have normal bone mass than appropriate fat diet (OR: 4.173, 95%CI: 1.007-17.289). After adjusting for all demographic factors, niacin intake (OR: 1.062, 95%CI: 1.019-1.108) was beneficial for normal bone mass, while vitamin B6 intake (OR: 0.627, 95%CI: 0.408-0.965) was not. After 20 years old, after adjusting for carbohydrate, protein, vitamin B6, niacin, dietary fat, vitamin B2, and vitamin B12, vitamin B2 intake (OR: 1.153, 95%CI: 1.04-1.278) was beneficial for normal bone mass, while vitamin B6 intake (OR: 0.842, 95%CI: 0.726-0.976) was not. After adjusting for all confounding factors, vitamin B2 intake (OR: 1.288, 95%CI: 1.102-1.506) was beneficial for normal bone mass. In addition, we found that even if there was no statistical significance, the effects of high-fat diet on bone mass were different at different ages. (4) Conclusions: By conducting an in-depth analysis of the NHANES database, this study reveals that dietary factors exert divergent effects on bone health across different age groups, implying the necessity of implementing tailored dietary strategies to maintain optimal bone health at distinct life stages.


Assuntos
Densidade Óssea , Niacina , Humanos , Adulto Jovem , Adulto , Inquéritos Nutricionais , Niacina/farmacologia , Dieta , Dieta Hiperlipídica , Riboflavina/farmacologia , Vitaminas/farmacologia
5.
Biomed Pharmacother ; 173: 116278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401513

RESUMO

Riboflavin (RF) as a photosensitizer has been used in corneal surgery and the inactivation of blood products. However, the effect of RF on immune cells after ultraviolet (UV) light stimulation has not been investigated. This study pioneered a novel application method of RF. Firstly, UV-stimulated RF was co-cultured with human peripheral blood mononuclear cells in vitro, and the apoptosis rate of lymphocyte subsets, cell proliferation inhibition rate and concentrations of IL-1ß, IL-6, IL-10, TNF-α were assessed. UV-stimulated RF was then administered intravenously to mice via the tail vein for a consecutive period of 5 days. The levels of immunoglobulin (IgG, IgM, IgA), complement (C3, C4) and cytokines (IFN-γ, IL-4, IL17, TGF-ß) were detected by ELISA. Flow cytometry was employed to analyze the populations of CD3+T, CD4+T, CD8+T and CD4+T/CD8+T cells in spleen lymphocytes of mice. The data showed that UV-stimulated RF can effectively induce apoptosis in lymphocytes, and different lymphocyte subtypes exhibited varying degrees of treatment tolerance. Additionally, the proliferative capacity of lymphocytes was suppressed, while their cytokine secretion capability was augmented. The animal experiments demonstrated that UV-stimulated RF led to a significant reduction observed in serum immunoglobulin and complement levels, accompanied by an elevation in IFN-γ, IL-17 and TGF-ß levels, as well as a decline in IL-4 level. In summary, the results of both in vitro and in vivo experiments have demonstrated that UV-stimulated RF, exhibits the ability to partially inhibit immune function. This novel approach utilizing RF may offer innovative perspectives for diseases requiring immunosuppressive treatment.


Assuntos
Interleucina-4 , Leucócitos Mononucleares , Humanos , Camundongos , Animais , Interleucina-4/farmacologia , Camundongos Endogâmicos BALB C , Citocinas/farmacologia , Riboflavina/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Imunoglobulinas/farmacologia , Linfócitos T CD4-Positivos
6.
Biochim Biophys Acta Gen Subj ; 1868(5): 130582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38340879

RESUMO

BACKGROUND: Riboflavin (vitamin B2) is one of the most important water-soluble vitamins and a coenzyme involved in many biochemical processes. It has previously been shown that adjuvant therapy with flavin mononucleotide (a water-soluble form of riboflavin) correlates with normalization of clinically relevant immune markers in patients with COVID-19, but the mechanism of this effect remains unclear. Here, the antiviral and anti-inflammatory effects of riboflavin were investigated to elucidate the molecular mechanisms underlying the riboflavin-induced effects. METHODS: Riboflavin was evaluated for recombinant SARS-CoV-2 PLpro inhibition in an enzyme kinetic assay and for direct inhibition of SARS-CoV-2 replication in Vero E6 cells, as well as for anti-inflammatory activity in polysaccharide-induced inflammation models, including endothelial cells in vitro and acute lung inflammation in vivo. RESULTS: For the first time, the ability of riboflavin at high concentrations (above 50 µM) to inhibit SARS-CoV-2 PLpro protease in vitro was demonstrated; however, no inhibition of viral replication in Vero E6 cells in vitro was found. At the same time, riboflavin exerted a pronounced anti-inflammatory effect in the polysaccharide-induced inflammation model, both in vitro, preventing polysaccharide-induced cell death, and in vivo, reducing inflammatory markers (IL-1ß, IL-6, and TNF-α) and normalizing lung histology. CONCLUSIONS: It is concluded that riboflavin reveals anti-inflammatory rather than antiviral activity for SARS-CoV-2 infection. GENERAL SIGNIFICANCE: Riboflavin could be suggested as a promising compound for the therapy of inflammatory diseases of broad origin.


Assuntos
COVID-19 , Células Endoteliais , Humanos , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Antivirais/farmacologia , Riboflavina/farmacologia , Polissacarídeos , Água
7.
BMC Res Notes ; 17(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167092

RESUMO

OBJECTIVE: It has been observed that viruses can be inactivated by UVA radiation and visible light. The aim of this study is to investigate whether a medium that contains a photosensitizer might have an influence on viral reduction under irradiation by UVA, violet or blue light. Test virus is the bacteriophage PhiX174 in the photosensitizer-free SM buffer and DMEM-F12, which contains the known photosensitizer riboflavin. RESULTS: The determined PhiX174 D90 doses in SM buffer and DMEM were 36.8 J/cm² and 13.6 J/cm² at 366 nm, 153.6 J/cm² and 129.1 J/cm² at 408 nm and 4988 J/cm² and 2477.1 J/cm² at 455 nm, respectively. It can be concluded that the medium has a large influence on the results. This might be caused by the photosensitizer riboflavin in DMEM-F12. As riboflavin is a key component in many cell culture media, irradiation experiments with viruses in cell culture media should be avoided if the investigation of intrinsical photoinactivation properties of viruses is aimed for.


Assuntos
Bacteriófagos , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Luz , Raios Ultravioleta , Riboflavina/farmacologia
8.
BMC Ophthalmol ; 24(1): 37, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267904

RESUMO

PURPOSE: This study evaluated the effect of high-fluence accelerated corneal cross-linking on the resistance to enzymatic digestion, assessing two chromophore/light combinations: riboflavin/UV-A light (RF/UV-A) and rose bengal/green light (RB/green). METHODS: Freshly prepared ex-vivo porcine corneas (n = 189) were divided into 8 groups groups. Group A corneas were unirradiated controls without chromophore soaking (A0), or soaked with riboflavin (A1) or rose bengal (A2). Group B corneas underwent accelerated epi-off RF/UV-A CXL at fluences of 5.4 J/cm² (B1), 10 J/cm² (B2), or 15 J/cm² (B3). Group C corneas underwent accelerated epi-off RB/green CXL at fluences of either 10 J/cm² (C1) or 15 J/cm² (C2). Following CXL, all corneas were digested in 0.3% collagenase-A solution, and the time until complete dissolution was measured. RESULTS: Non-irradiated controls exposed to RF and RB enhanced corneal resistance to collagenase digestion, with RB having a stronger effect than RF. RF/UV-A-treated corneas showed significantly increased digestion resistance with increasing fluence levels. RB/green-treated corneas displayed enhanced digestion resistance with each increase in fluence up to 10 J/cm²; a 15 J/cm² fluence yielded similar digestion resistance times to a 10 J/cm² fluence, suggesting a plateau effect in accelerated RB/green CXL protocols. CONCLUSIONS: When compared to standard-fluence treatments, high-fluence accelerated epi-off CXL using both riboflavin and rose bengal significantly increases resistance to enzymatic digestion. The optimal settings for clinical protocols might be 15 J/cm² (30 mW/cm² for 8 min 20 s) for RF/UV-A and 10 J/cm² (15 mW/cm² for 11 min 7 s) for RB/Green Light.


Assuntos
Crosslinking Corneano , Rosa Bengala , Animais , Suínos , Rosa Bengala/farmacologia , Riboflavina/farmacologia , Colagenases , Digestão
9.
Transl Vis Sci Technol ; 13(1): 30, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289609

RESUMO

Purpose: The purpose of this study was to determine if concurrent riboflavin/UV-A light (RF/UV-A) and rose Bengal/green light (RB/green) epi-off PACK-CXL enhances corneal resistance to enzymatic digestion compared to separate chromophore/light treatments. Methods: Ex vivo porcine corneas were allocated as follows. Group A corneas were soaked with riboflavin (RF) and were either not irradiated (A1, controls) or were irradiated with 10 (A2) or 15 J/cm² (A3) UV-A light at 365 nm, respectively. Group B corneas were soaked with RB and either not irradiated (B1, controls) or were illuminated with 10 (B2) or 15 J/cm² (B3) green light at 525 nm, respectively. Corneas in group C were soaked with both RF and RB and were either not irradiated (C1, controls) or were subjected to the same session consecutive 10 J/cm2 (C2) or 15 J/cm2 (C3) UV-A and green light exposure. Following treatment, all corneas were exposed to 0.3% collagenase A to assess digestion time until corneal button dissolution. Results: A1 to A3 digestion times were 21.38, 30.5, and 32.25 hours, respectively, with A2 and A3 showing increased resistance to A1. B1-3 had digestion times of 31.2, 33.81, and 34.38 hours, with B3 resisting more than B1. C1 to C3 times were 33.47, 39.81, and 51.94 hours; C3 exhibited superior resistance to C1 and C2 (both P < 0.05). Conclusions: Same-session combined RF/UV-A and RB/green PACK-cross-linking significantly increases corneal enzymatic digestion resistance over standalone treatments. Translational Relevance: Combining RF-based and RB-based PACK-CXL considerably increases corneal collagenase digestion resistance, potentially minimizing ulcer size in clinical contexts.


Assuntos
Crosslinking Corneano , Rosa Bengala , Animais , Suínos , Rosa Bengala/farmacologia , 60495 , Córnea , Riboflavina/farmacologia , Colagenases , Digestão
10.
Photochem Photobiol ; 100(1): 204-213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029736

RESUMO

An acetylated riboflavin derivative, 3-methyl-tetraacetyl riboflavin (3MeTARF), is a compound with high photostability and photophysical properties similar to riboflavin, including the ability to photogenerate singlet oxygen. In the present study, we compared the effects of irradiation on A431 cancer cells with blue LED light (438 nm) in the presence of 3MeTARF and riboflavin on MAPK phosphorylation, apoptosis, caspase 3/7 activation and PARP cleavage. We observed that photogenerated oxidative stress in this reaction activates MAPK by increasing phosphorylation of p38 and JNK proteins. Preincubation of cells with inhibitors specific for phosphorylation of p38 and JNK proteins (SB203580, SP600125), respectively, results in decreased caspase 3/7 activation and PARP cleavage. We showed that the tetraacetyl derivative more effectively activates MAPK and skin cancer cell death compared to riboflavin. These data, together with results of our previous study, support the hypothesis that 3MeTARF, of riboflavin, might be more useful and desirable as a compound for use in photodynamic oxidation processes, including its therapeutic potential.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Caspase 3/metabolismo , Caspase 3/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Fosforilação , Riboflavina/farmacologia , Riboflavina/metabolismo
11.
Syst Rev ; 12(1): 208, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951953

RESUMO

AIM: To determine the effectiveness and safety of photoactivated chromophore-corneal cross-linking (PACK-CXL) adjuvant in infectious keratitis by April 5, 2022. METHODS: We searched randomized controlled trials (RCTs) comparing standard antibiotic treatment (SAT) plus PACK-CXL to SAT in infectious keratitis in Embase, MEDLINE with PubMed, Web of Science, and Cochrane Library. We independently screened and extracted data using predesigned tables. Cochrane's risk-of-bias tool was utilized to examine the quality of RCTs. A random-effects model was employed to determine the overall effect size of the meta-analyses. Grading of Recommendations, and Assessment, Development and Evaluations (GRADE) was also performed to examine the quality of evidence. RESULTS: Seven eligible RCTs with 283 patients were acquired. Adjuvant PACK-CXL reduced the time needed to perform corneal healing in fungal keratitis (- 1.33 months; 95% CI, - 1.83 to - 0.42, I2 = 0%, P < 0.05) as compared to SAT alone. The risks of adverse events were not significantly different both in fungal and bacterial keratitis. Due to the substantial heterogeneity among studies, such as population, the type and severity of infectious keratitis, drug regimens of SAT, PACK-CXL protocol, and the judgment of subjective outcomes, the evidence grade was low. CONCLUSION: Adjuvant PACK-CXL accelerates fungal keratitis healing as compared to SAT alone. But more rigorous RCTs are required to determine the clinical effectiveness and safety.


Assuntos
Crosslinking Corneano , Ceratite , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Colágeno/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Antibacterianos/uso terapêutico
12.
Transl Vis Sci Technol ; 12(11): 10, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930667

RESUMO

Purpose: This study aimed to evaluate the trans-epithelial permeability enhancement and cell damage caused by a novel riboflavin composition for corneal delivery. Methods: We developed a trans-epithelial formulation of riboflavin for corneal delivery using 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) and isostearic acid (ISA). The permeation enhancement was evaluated using an in vitro corneal epithelial cell culture system by measuring the amount of transferred riboflavin with high-performance liquid chromatography. Riboflavin permeation of MedioCROSS TE, a commercially available riboflavin formulation containing benzalkonium chloride, was also evaluated and compared to that of the DODAP/ISA formulation by changing the riboflavin concentration. The trans-epithelial electrical resistance (TEER) was measured after exposure to the samples in an in vitro corneal epithelial cell culture system to assess cytotoxicity. Results: The DODAP/ISA formulation demonstrated greater permeation when used together than when each component was used individually. The permeation enhancement effect of the DODAP/ISA formulation was almost the same as that of MedioCROSS TE. However, when a 10-fold higher riboflavin concentration was used in the DODAP/ISA formulation, the permeation enhancement effect surpassed that of MedioCROSS TE. After 24 hours of exposure, the TEER of the DODAP/ISA formulation was higher than that of MedioCROSS TE, indicating that the DODAP/ISA formulation was less cytotoxic than MedioCROSS TE. Conclusions: This study indicated that the DODAP/ISA formulation could serve as a less cytotoxic alternative to MedioCROSS TE. Further studies are required to determine the clinical efficacy and safety of the DODAP/ISA formulation in vivo. Translational Relevance: This study may provide alternative procedures for corneal collagen crosslinking with less of a cytotoxic effect on corneal epithelial cells.


Assuntos
Córnea , Riboflavina , Riboflavina/farmacologia , Crosslinking Corneano , Compostos de Benzalcônio , Células Epiteliais
13.
Curr Drug Metab ; 24(10): 709-722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936469

RESUMO

INTRODUCTION: Crocin is one of the main components of Crocus sativus L. and can alleviate oxidative stress and inflammation in diabetic nephropathy (DN). However, the specific mechanism by which crocin treats DN still needs to be further elucidated. METHOD: In the present study, a mouse model of DN was first established to investigate the therapeutic effect of crocin on DN mice. Subsequently, non-targeted metabolomics techniques were used to analyze the mechanisms of action of crocin in the treatment of DN. The effects of crocin on CYP4A11/PPARγ and TGF-ß/Smad pathway were also investigated. RESULT: Results showed that crocin exhibited significant therapeutic and anti-inflammatory, and anti-oxidative effects on DN mice. In addition, the non-targeted metabolomics results indicated that crocin treatment affected several metabolites in kidney. These metabolites were mainly associated with biotin metabolism, riboflavin metabolism, and arachidonic acid metabolism. Furthermore, crocin treatment upregulated the decreased levels of CYP4A11 and phosphorylated PPARγ, and reduced the increased levels of TGF-ß1 and phosphorylated Smad2/3 in the kidneys of DN mice. CONCLUSION: In conclusion, our study validated the considerable therapeutic, anti-inflammatory, and antioxidative impacts of crocin on DN mice. The mechanism of crocin treatment may be related to the regulation of biotin riboflavin and arachidonic acid metabolism, the activation of CYP4A11/PPARγ pathway, and the inhibition of TGF-ß/Smad pathway in the kidney.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico , PPAR gama/farmacologia , PPAR gama/uso terapêutico , Ácido Araquidônico/farmacologia , Ácido Araquidônico/uso terapêutico , Biotina/metabolismo , Biotina/farmacologia , Biotina/uso terapêutico , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Riboflavina/metabolismo , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
14.
J Nutr Biochem ; 122: 109453, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788723

RESUMO

Insufficient riboflavin intake has been associated with poor bone health. This study aimed to investigate the effect of riboflavin deficiency on bone health in vivo and in vitro. Riboflavin deficiency was successfully developed in rats and osteoblasts. The results indicated that bone mineral density, serum bone alkaline phosphatase, bone phosphorus, and bone calcium were significantly decreased while serum ionized calcium and osteocalcin were significantly increased in the riboflavin-deficient rats. Riboflavin deficiency also induced the reduction of Runx2, Osterix, and BMP-2/Smad1/5/9 cascade in the femur. These results were further verified in cellular experiments. Our findings demonstrated that alkaline phosphatase activities and calcified nodules were significantly decreased while intracellular osteocalcin and pro-collagen I c-terminal propeptide were significantly increased in the riboflavin-deficient osteoblasts. Additionally, the protein expression of Osterix, Runx2, and BMP-2/Smad1/5/9 cascade were significantly decreased while the protein expression of p-p38 MAPK were significantly increased in the riboflavin-deficient cells compared to the control cells. Blockage of p38 MAPK signaling pathway with SB203580 reversed these effects in riboflavin-deficient osteoblastic cells. Our data suggest that riboflavin deficiency causes osteoblast malfunction and retards bone matrix mineralization via p38 MAPK/BMP-2/Smad1/5/9 signaling pathway.


Assuntos
Densidade Óssea , Deficiência de Riboflavina , Ratos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteocalcina/metabolismo , Transdução de Sinais , Deficiência de Riboflavina/metabolismo , Fosfatase Alcalina/metabolismo , Cálcio/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Osteoblastos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Riboflavina/farmacologia , Riboflavina/metabolismo , Diferenciação Celular
15.
Sci Rep ; 13(1): 17004, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813934

RESUMO

Biomaterial engineering approaches involve using a combination of miscellaneous bioactive molecules which may promote cell proliferation and, thus, form a scaffold with the environment that favors the regeneration process. Chitosan, a naturally occurring biodegradable polymer, possess some essential features, i.e., biodegradability, biocompatibility, and in the solid phase good porosity, which may contribute to promote cell adhesion. Moreover, doping of the materials with other biocompounds will create a unique and multifunctional scaffold that will be useful in regenerative medicine. This study is focused on the manufacturing and characterization of composite materials based on chitosan, hydroxyapatite, and riboflavin. The resulting films were fabricated by the casting/solvent evaporation method. Morphological and spectroscopy analyses of the films revealed a porous structure and an interconnection between chitosan and apatite. The composite material showed an inhibitory effect on Staphylococcus aureus and exhibited higher antioxidant activity compared to pure chitosan. In vitro studies on riboflavin showed increased cell proliferation and migration of fibroblasts and osteosarcoma cells, thus demonstrating their potential for bone tissue engineering applications.


Assuntos
Materiais Biocompatíveis , Quitosana , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Quitosana/farmacologia , Quitosana/química , Durapatita/farmacologia , Durapatita/química , Tecidos Suporte/química , Engenharia Tecidual/métodos , Regeneração Óssea , Porosidade , Riboflavina/farmacologia
16.
Photodiagnosis Photodyn Ther ; 44: 103833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802275

RESUMO

BACKGROUND: Peri-implantitis is a destructive inflammatory disease affecting both hard and soft tissues of the osseointegrated implant and causing bone loss and envelope surrounding the implant. The study aimed at evaluating the effect of Photodynamic therapy with Curcumin and Riboflavin on the level of decontamination of implant surface impregnated with Aggregatibacter actinomycetemcomitans (A.a) biofilm. MATERIALS AND METHODS: In this experimental and laboratory study, 42 implants (4.3 mm in diameter and 8 mm in length) were infected with A.a. bacterial suspension. Then, the implants carrying A.a biofilm were randomly divided into seven groups (n = 6). The groups included: 1- a negative control group (without treatment), 2- a positive control group of Chlorhexidine 0.12 %, 3- a Curcumin (5 mg/ ml) group, 4- a Riboflavin (0.5 %) group, 5- an LED irradiation group (390-480 nm), 6- a photodynamic therapy with Curcumin group, and 7- a photodynamic therapy with Riboflavin group. Then, the implants were sonicated and the amount of CFU/mL of each sample was calculated. One-way ANOVA and Tamhane tests were used to analyze the data. RESULTS: The lowest mean number of colonies of A.a (CFU/ mL) were seen in the following groups, respectively: the positive control group of Chlorhexidine 0.12 %, the photodynamic therapy with Curcumin group, the photodynamic therapy with Riboflavin group, the Curcumin (5 mg/ ml) group, the Riboflavin (0.5 %) group, the LED radiation group, and the negative control group. The use of photodynamic therapy with Curcumin significantly reduced the number of colonies of A.a (CFU/ mL) in comparison with the photodynamic therapy with Riboflavin group (p = 0.004), the Riboflavin group (p = 0.045), the LED radiation group (p = 0.012), and the negative control group (p = 0.007). CONCLUSION: aPDT with Curcumin and LED can reduce A.a biofilm on implant surfaces and can be used as a safe and non-invasive disinfection method to reduce A.a biofilm on implant surfaces.


Assuntos
Curcumina , Peri-Implantite , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Clorexidina/farmacologia , Clorexidina/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Aggregatibacter actinomycetemcomitans , Lasers Semicondutores , Biofilmes , Riboflavina/farmacologia , Peri-Implantite/tratamento farmacológico , Peri-Implantite/prevenção & controle
17.
Photodiagnosis Photodyn Ther ; 44: 103841, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832710

RESUMO

Wounds infected by Pseudomonas aeruginosa (P. aeruginosa) biofilms are characterized by poor healing and by being long lasting. Pyocyanin and pyoverdine are exotoxins that contribute to P. aeruginosa pathogenicity in wound infections and are known as virulence factors. Despite the usefulness of antimicrobial photodynamic therapy (PDT) in the management of wound infections, biofilms are hurdle for microbial photoinactivation. Quorum sensing (QS) is a cell density-dependent chemical signaling system P. aeruginosa uses to regulate biofilm formation and virulence factors production. In the current study, QS attenuation was used in combination with PDT against P. aeruginosa biofilm cultured on skin explant. Iberin is a QS inhibitor that attenuates P. aeruginosa virulence and affects biofilm integrity. The antibiofilm and QS inhibitory activities of iberin in combination with either riboflavin or 5,10,15,20-Tetrakis(1-methyl-4-pyridinio) porphyrin tetra p-toluenesulfonate (TMP) mediated PDT were investigated using viable count method and pyocyanin and pyoverdine assays, respectively. No bactericidal activity was reported when iberin was added to a mature biofilm (24 h) followed by PDT. When added to a growing biofilm at multiple time points (0 h, 24 h and 48 h), iberin inhibited P. aeruginosa biofilm QS signaling system. This inhibitory effect resulted in an observable decrease in the levels of the QS-regulated virulence factors, pyocyanin and pyoverdine, without any effect on the growth of the biofilm cultures. These changes in biofilm virulence were associated with a decrease in biofilm resistance to PDT and caused bactericidal effect upon photosensitizers treatment and irradiation. Iberin-treated-riboflavin-mediated PDT resulted in a significant 1.3 log reduction in biofilm population. Similarly, iberin-treated-TMP-mediated PDT caused a significant 1.8 log reduction in biofilm population. The combination of QS inhibitor with PDT is a promising alternative antimicrobial therapy for the management of biofilms.


Assuntos
Fotoquimioterapia , Infecção dos Ferimentos , Humanos , Pseudomonas aeruginosa , Piocianina , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Biofilmes , Percepção de Quorum , Antibacterianos/farmacologia , Fatores de Virulência , Riboflavina/farmacologia
18.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759526

RESUMO

Riboflavin, a water-soluble vitamin B2, possesses unique biological and physicochemical properties. Its photosensitizing properties make it suitable for various biological applications, such as pathogen inactivation and photodynamic therapy. However, the effectiveness of riboflavin as a photosensitizer is hindered by its degradation upon exposure to light. The review aims to highlight the significance of riboflavin and its derivatives as potential photosensitizers for use in photodynamic therapy. Additionally, a concise overview of photodynamic therapy and utilization of blue light in dermatology is provided, as well as the photochemistry and photobiophysics of riboflavin and its derivatives. Particular emphasis is given to the latest findings on the use of acetylated 3-methyltetraacetyl-riboflavin derivative (3MeTARF) in photodynamic therapy.


Assuntos
Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Riboflavina/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Vitaminas
19.
Ocul Surf ; 30: 150-159, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683969

RESUMO

Induced corneal collagen crosslinking and mechanical stiffening via ultraviolet-A photoactivation of riboflavin (UVA CXL) is now a common treatment for corneal ectasia and Keratoconus. Some effects of the procedure such as induced mechanical stiffening, corneal flattening, and cellular toxicity are well-known, but others remain more controversial. Authors report a variety of contradictory effects, and provide evidence based on individual results and observations. A full understanding of the effects of and mechanisms behind this procedure are essential to predicting its outcome. A growing interest in modifications to the standard UVA CXL protocol, such as transepithelial or accelerated UVA CXL, makes analyzing the literature as a whole more urgent. This review presents an analysis of both the agreed-upon and contradictory results reported and the various methods used to obtain them.


Assuntos
Córnea , Ceratocone , Humanos , Raios Ultravioleta , Colágeno , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Ceratocone/tratamento farmacológico , Reagentes de Ligações Cruzadas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Substância Própria
20.
Transl Vis Sci Technol ; 12(9): 14, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738058

RESUMO

Purpose: To investigate and compare the efficacy of high-fluence accelerated photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) using either riboflavin/ultraviolet (UV)-A light or rose bengal/green light to treat Staphylococcus aureus or Pseudomonas aeruginosa infections in an ex vivo porcine cornea model. Methods: One hundred and seventeen ex vivo porcine corneas were injected with clinical isolates of S. aureus or P. aeruginosa, divided into eight groups, and cultured for 24 hours. Then, either riboflavin with UV-A light irradiation (30 mW/cm2; 8 minutes, 20 seconds; 15 J/cm2) or rose bengal with green light irradiation (15 mW/cm2, 16 minutes, 40 seconds; 15 J/cm2) was applied; unirradiated infected groups served as controls. All corneas were incubated for another 24 hours. Next, corneal buttons were obtained and vortexed to release the bacterial cells. The irradiated and unirradiated solutions were then plated and incubated on agar plates. The amount of colony-forming units was quantified and the bacterial killing ratios (BKRs) resulting from different PACK-CXL protocols relative to non-treated controls were calculated. Results: Riboflavin/UV-A light PACK-CXL resulted in median BKRs of 52.8% and 45.8% in S. aureus and P. aeruginosa, respectively, whereas rose bengal/green light PACK-CXL resulted in significantly greater BKRs of 76.7% and 81.0%, respectively (both P < 0.01). Conclusions: Both accelerated PACK-CXL protocols significantly decreased S. aureus and P. aeruginosa bacterial loads. Comparing the riboflavin/UV-A light and rose bengal/green light PACK-CXL approaches in the same experimental setup may help develop strain-specific and depth-dependent PACK-CXL approaches that could be used alongside the current standard of care. Translational Relevance: Our study used an animal model to gain insight into the efficacy of high-fluence accelerated PACK-CXL using either riboflavin/UV-A light or rose bengal/green light to treat Staphylococcus aureus or Pseudomonas aeruginosa infections.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Infecções por Pseudomonas , Suínos , Animais , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Staphylococcus aureus , Córnea , Ceratite/tratamento farmacológico , Riboflavina/farmacologia , Riboflavina/uso terapêutico , Infecções Oculares Bacterianas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...